首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2444篇
  免费   152篇
  国内免费   470篇
  2023年   45篇
  2022年   35篇
  2021年   71篇
  2020年   76篇
  2019年   85篇
  2018年   74篇
  2017年   72篇
  2016年   88篇
  2015年   104篇
  2014年   98篇
  2013年   161篇
  2012年   93篇
  2011年   93篇
  2010年   92篇
  2009年   90篇
  2008年   97篇
  2007年   92篇
  2006年   105篇
  2005年   127篇
  2004年   99篇
  2003年   101篇
  2002年   103篇
  2001年   72篇
  2000年   81篇
  1999年   64篇
  1998年   74篇
  1997年   67篇
  1996年   67篇
  1995年   51篇
  1994年   55篇
  1993年   75篇
  1992年   58篇
  1991年   57篇
  1990年   51篇
  1989年   43篇
  1988年   47篇
  1987年   21篇
  1986年   12篇
  1985年   31篇
  1984年   20篇
  1983年   10篇
  1982年   18篇
  1981年   16篇
  1980年   14篇
  1979年   9篇
  1978年   5篇
  1977年   8篇
  1975年   12篇
  1974年   11篇
  1973年   7篇
排序方式: 共有3066条查询结果,搜索用时 15 毫秒
991.
Summary Bioengineering approaches provide unprecedented opportunities for reducing poverty, food insecurity, child malnutrition, and natural resource degradation. Genetic engineering offers outstanding potential to increase the efficiency of crop improvement. Thus agricultural biotechnology could enhance global food production and availability in a sustainable way. Small farmers in developing countries are faced with many problems and constraints which biotechnology may assist. Yet, there are varying levels of opposition to the use of this technology in most countries and it is especially intense in Europe. While there is certain public apprehension with the use of bioengineering in food improvement, the primary hurdles facing this technology are the stringent and burdensome regulatory requirements for commercialization, opposition from the special interest groups, apprehension by the food industry especially with the whole foods, and trade barriers including rigid policies on traceability and labeling. Bioengineered crops such as soybean, maize, cotton, and canola with a few traits have already made a remarkable impaet on food production and environmental quality. But, in the developing world, bioengineering of crops such as bananas, cassava, yams, sweet potatoes, sorghum, rice, maize, wheat, millet, and legumes, along with livestock, can elearly contribute to global food security. However, the integration of biotechnology into agricultural research in developing countries faces many challenges which must be addressed: financial, technical, political, environmental, activism, intellectual-property, biosafety, and trade-related issues. To ensure that developing countries can harness the benefit of this technology with minimal problems, concerted efforts must be pursued to create an awareness of its potential benefits and to address the concerns related to its use through dialog among the various stakeholders: policy makers, scientists, trade groups, food industry, consumer organizations, farmer groups, media, and non-governmental organizations. Biotechnology holds great promise as a new tool in the scientific toolkit for generating applied agricultural technologies; however, per se it is not a panacea for the worlds problems of hunger and poverty.  相似文献   
992.
In order to enhance the resistance to pests, transgenic maize (Zea mays L.) plants from elite inbred lines containing the gene encoding snowdrop lectin (Galanthus nivalis L. agglutinin; GNA) under control of a phloem-specific promoter were generated through theAgrobacterium tumefaciens- mediated method. The toxicity of GNA-expressing plants to aphids has also been studied. The independently derived plants were subjected to molecular analyses. Polymerase chain reaction (PCR) and Southern blot analyses confirmed that thegna gene was integrated into maize genome and inherited to the following generations. The typical Mendelian patterns of inheritance occurred in most cases. The level of GNA expression at 0.13%-0.28% of total soluble protein was observed in different transgenic plants. The progeny of nine GNA-expressing independent transformants that were derived separately from the elite inbred lines DH4866, DH9942, and 8902, were selected for examination of resistance to aphids. These plants synthesized GNA at levels above 0.22% total soluble protein, and enhanced resistance to aphids was demonstrated by exposing the plants to corn leaf aphid (Rhopalosiphum maidis Fitch) under greenhouse conditions. The nymph production was significantly reduced by 46.9% on GNA-expressing plants. Field evaluation of the transgenic plants supported the results from the inoculation trial. After a series of artificial self-crosses, some homozygous transgenic maize lines expressing GNA were obtained. In the present study, we have obtained new insect-resistant maize material for further breeding work.  相似文献   
993.
Photorespiratory enzyme serine:glyoxylate aminotransferase (SGAT, EC 2.6.1.45) was purified from green parts of seedlings of two Gramminae species with different photosynthetic pathways, maize (Zea mays L., C(4) species) and wheat (Triticum aestivum L., C(3) species). The preparation from wheat was homogeneous as judged by SDS-PAGE with silver staining for proteins; however, the same method revealed approximately 9% contamination in a highly purified maize preparation. Molecular masses of SGAT from maize and wheat were estimated by SDS-PAGE to be 44.1 and 44.6 kDa, respectively. C(4) enzyme exhibited a specific activity in homogenates that was seven times lower than wheat, and this was associated with lower K (m) values for all substrates examined as well as a more than two times lower turnover number k (cat) with serine and glyoxylate as a pair of substrates. In contrast, the ratio of the turnover number to K (m)(Ser)(k (cat)/K (m)(Ser)) for C(4) aminotransferase proved to be about two times higher than for C(3) aminotransferase. The sensitivity of two enzymes to some inhibitors, especially aminooxyacetate, was different and they also differed with respect to thermal stability and pH optimum - the maize enzyme required 0.6 unit higher pH (8.6) for maximal activity and was more heat-resistant.  相似文献   
994.
Cereal endosperm is a model system for cell fate determination in plants. In wild-type plants the outermost endosperm cells adopt aleurone cell fate, while all underlying cells display starchy endosperm cell fate. Mutant analysis showed that cell fate is determined by position rather than lineage. To further characterise the precise cell fate of the outermost cells, we performed a differential screen and isolated the novel marker gene Vpp1. It encodes a vacuolar H+-translocating inorganic pyrophosphatase (V-PPase) and is mainly expressed in kernels, leaves and tassels. In kernels, its expression is restricted to the aleurone layer with the maximum of expression shifting from the adaxial to the abaxial side during early stages. Together with three other marker genes Vpp1 was then used to analyse the cell fate of the outermost cells in Dap3, Dap7, cr4 and dek1 mutants, all of which have aberrant aleurone layers. In the Dap3 and Dap7 mutants the Vpp1 and Ltp2 markers but not the A1 and Zein markers were expressed in patches without aleurone indicating that the outermost cells had some but not all features of aleurone cells and did not simply adopt starchy endosperm cell fate. A similar result was obtained in the cr4 mutant, although Ltp2 expression was less generalised. In other Dap7 patches characterised by multiple aleurone-like cell layers the expression of Vpp1 and Ltp2 confirmed the aleurone cell fate of the cells in the additional cell layers. The analysis of dek1 mutants confirmed the starchy endosperm cell fate of the majority but not all outermost cells. Based on these data we propose a model suggesting a stepwise commitment to aleurone cell fate. Sequential steps are marked by the expression of Vpp1, the expression of Ltp2, the acquisition of a regular shape and thick walls and finally pigmentation coupled with A1 expression.  相似文献   
995.
Colls  J.J.  Hall  D.P. 《Photosynthetica》2004,42(1):139-145
Metal stress was induced in maize (Zea mays L.) by the addition to the soil of a range of concentrations of either ethylene-diamine-tetra-acetate (EDTA) or citric acid (CA) as chelating agents. Measurements were taken using a recently-developed sensor capable of plant fluorescence detection at wavelengths of 762 and 688 nm. Atmospheric oxygen absorbs radiation at these wavelengths. As such, measured fluorescence can be attributed to the plants under observation. Red/far-red (690/760 nm, R/FR) chlorophyll (Chl) fluorescence ratios were measured before addition of the chelating agents and during the month following. Significant differences were seen in the fluorescence responses of those plants for which high concentrations [ 30 mmol kg–1(d.m. soil)] of EDTA were added to the pots compared to those for which CA or no chelating agent was added. The plants for which high concentrations of EDTA were added also exhibited higher tissue metal concentrations and demonstrated visible signs of stress. Before signs of visual stress became apparent, R/FR Chl fluorescence ratios for metal-stressed plants were significantly different to those observed for unstressed plants. These results support the use of plant fluorescence as a potential tool for early indication of phytotoxic metal stress.  相似文献   
996.
PCR analysis was used to detect Fusarium species generically, as well as the mycotoxin-producing species F.␣subglutinans, F. proliferatum, and F. verticillioides in leaf axil and other maize tissues during ear fill in a multiyear study in central Illinois. The frequency of Fusarium detected varied from site to site and year to year. Fusarium was generically detected more frequently in leaf axil material than in leaf/husk lesions. In two growing seasons, the leaf axil samples were also tested for the presence of the mycotoxin producing species F. proliferatum, F. subglutinans, and F. verticillioides. Overall, F. proliferatum and F. verticillioides were detected less often than F. subglutinans. Fusarium was generically and specifically detected most commonly where visible fungal growth was present in leaf axil material. Disclaimer: The mention of firm names or trade products in this article does not imply that they are endorsed or recommended by the United States Department of Agriculture over other firms or similar products not mentioned.  相似文献   
997.
研究了钙离子和亚精胺对盐胁迫条件下玉米幼苗生长状况、电解质渗漏、离子含量和多胺水平的影响。结果表明盐胁迫下,钠离子和腐胺含量升高,质膜受到严重伤害,而钾离子、钙离子、亚精胺以及精胺水平降低。外加氯化钙和亚精胺不但能逆转氯化钠带来的离子平衡失调、多胺代谢紊乱,而且还能减轻氯化钠导致的生长抑制和质膜伤害。在盐胁迫条件下,二环己基胺引起多胺含量严重下降的情况在一定程度上能被外加氯化钙处理所缓解。这些结果提示,钙、多胺代谢以及盐渍环境下玉米生长之间可能存在一定的关系。  相似文献   
998.
利用cDNA-AFLP技术分离了一个与玉米基因表达沉默有关的cDNA片段,Northern杂交分析表明,该基因在Mo17的苗期和雄穗生长锥伸长期都表达,但在Mo17与其亲缘关系较近的另一亲本杂交的F1代中却表现沉默,即表现单亲沉默。同源性分析表明,该克隆片段与GenBank中玉米通用调控因子(GRF)部分区段有98.6%的同源性,与玉米通用调控因子编码的mRNA部分序列有83%的同源性。以上结果表明,基因沉默可能是亲本GRF在F  相似文献   
999.
玉米生长生理生态学模拟模型   总被引:9,自引:0,他引:9  
建立了玉米(Zea mays L.)生长生理生态学模拟模型(MPESM)。模型由5个子模型组成:1)气象资料形成子模型,2)水分影响子模型,3)氮素影响子模型,4)玉米发育子模型,5)玉米生长子模型。MPESM具有5个主要功能:1)模拟环境条件(气象因子、土壤湿度和氮素供应)对玉米生长和发育的影响,2)模拟玉米的发育进程,3)模拟玉米的生长过程,4)模拟玉米产量形成过程,5)玉米最优化栽培管理决策  相似文献   
1000.
施磷和接种AM真菌对玉米耐盐性的影响   总被引:14,自引:0,他引:14  
在盆栽条件下研究了不同施磷水平(25,50,100,150mg/kg),不同盐水平(NaCl0,1.2g/kg)和不同接种AM真菌处理(接种和不接种)对玉米生长的影响。结果表明,施磷量为50mg/kg时基本满足玉米生长的需要,1.2g/kg NaCl胁迫显著抑制了玉米的生长;施磷明显促进玉米在盐胁迫条件下的生长,施磷水平和接种菌根真菌的交互作用对玉米耐盐性具有显著影响;盐胁迫条件下,接种AM真菌在  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号